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Abstract. Let π be a permutation of [n] = {1, . . . , n} and denote by �(π) the length of a longest
increasing subsequence of π . Let �n,k be the number of permutations π of [n] with �(π) = k.
Chen conjectured that the sequence �n,1, �n,2, . . . , �n,n is log concave for every fixed positive in-
teger n. We conjecture that the same is true if one is restricted to considering involutions and we
show that these two conjectures are closely related. We also prove various analogues of these
conjectures concerning permutations whose output tableaux under the Robinson-Schensted al-
gorithm have certain shapes. In addition, we present a proof of Deift that part of the limiting
distribution is log concave. Various other conjectures are discussed.

Keywords: hook shape, involution, log concavity, longest increasing subsequence, permutation,
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1. Introduction

Let Sn be the symmetric group of all permutations of [n] = {1, 2, . . . , n}. We will
view π = π1π2 · · ·πn ∈ Sn as a sequence (one-line notation). Let �(π) denote the
length of a longest increasing subsequence of π . For example, if π = 4172536 then
�(π) = 4 because the subsequence 1256 is increasing and there is no longer such
sequence. Define

Ln,k = {π ∈Sn : �(π) = k} and �n,k = #Ln,k,

where the hash symbol denotes cardinality.
∗ Supported by the Austrian Science Foundation FWF, grant P25337-N23.
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another relation between sequences counting certain permutations and those count-
ing certain involutions. Section 3 restricts attention to permutations whose output
tableaux under the Robinson-Schensted map have certain shapes. Fixed-point free
involutions are considered in Section 4. Baik, Deift, and Johansson [4] proved that,
with suitable scaling, the sequence in Conjecture 1.1 converges to the Tracy-Widom
distribution as n→ ∞. In Section 5, we present a proof of Deift that this distribution
is log concave for nonnegative x where x is the independent variable. We end with
more conjectures related to 1.1 and 1.2.

2. Involutions

To connect Conjectures 1.1 and 1.2, we will need some properties of the Robinson-
Schensted correspondence. For more information about this important map, see the
texts of Sagan [15] or Stanley [21].

Let λ = (λ1, λ2, . . . , λk) be a partition of n, written λ � n. We denote by SYTλ
the set of all standard Young tableaux of shape λ , and if P∈ SYTλ , then we will also
write shP= λ . The Robinson-Schensted map is a bijection

RS: Sn →
⋃

λ�n
(SYTλ )2,

i.e., a permutation of length n is identified with a pair of standard Young tableaux of
size n and of the same shape. We will use the notation RS(π) = (P,Q). Since shP=
shQ we can define the shape of π to be the common shape of its output tableaux. It
will also be convenient to define for pairs of permutations sh(π , σ) = (shπ , shσ).

We need two important results about RS, the first due to Schensted [16] and the
second to Schützenberger [17].

Theorem 2.1. The map RS has the following properties.

(1) If shπ = (λ1, . . . , λk) then �(π) = λ1. Also, the length of a longest decreasing
subsequence of π is the number of cells in the first column of λ .

(2) A permutation π is an involution if and only if RS(π) = (P, P) for some standard
Young tableau P.

By (2), there is a canonical bijection between involutions and standard Young
tableaux. Because of this, we will go freely back and forth between involutions and
tableaux without further mention.

One way to proveConjecture 1.1 would be to find injectionsF : Ln,k−1×Ln,k+1→
L2n,k for all n, k. Call any map with this domain and range shape preserving if

sh(π , π ′) = sh(σ , σ ′) =⇒ shF(π , π ′) = shF(σ , σ ′),

for all (π , π ′), (σ , σ ′) ∈ Ln,k−1 × Ln,k+1. We will also apply this terminology to
functions f : In,k−1× In,k+1 → I2n,k. Our first result shows that if one can prove Con-
jecture 1.2 using a shape-preserving injection, then one gets Conjecture 1.1 for free.

Theorem 2.2. Suppose that there is a shape-preserving injection f : In,k−1×In,k+1→
I2n,k for some n, k. Then there is a shape-preserving injection F : Ln,k−1×Ln,k+1 →
L2n,k.

2 M. Bóna, M.-L. Lackner, and B.E. Sagan

The statistic �(π) plays an important role in a number of combinatorial contexts,
for example, in famous theorems of Erdős and Szekeres [9] and of Schensted [16].
The problem of determining the distribution of �(π) in a random permutation π of
length n was solved in a tour de force by Baik, Deift, and Johansson [4]. The his-
tory of this problem is described by Aldous and Diaconis [2]; see also the recently
published book by Romik [14] on the subject.

The statistic �(π) is not only interesting from a combinatorial or algorithmic point
of view, but also connectedwith biology via the Ulam distance which is used to model
evolutionary distance in DNA research [23]. The Ulam distance between π , σ ∈Sn,
denote U(π , σ), is the minimum number of steps needed to obtain σ from π where
a step consists of taking an element of a sequence and placing it somewhere else in
the sequence. If id is the identity permutation then it is easy to see that U(id, π) =
n− �(π). Indeed, one can fix a longest increasing subsequence of π and then move
all the elements of id which are not in that subsequence to the appropriate places to
form π .

A sequence of real numbers l1, l2, . . . , ln is said to be log-concave if lk−1lk+1 ≤ l2k
for all k ∈ [n]. Here we use the convention that l0 = ln+1 = 0. Log concave sequences
appear often in algebra, combinatorics, and geometry; see the survey articles of Stan-
ley [19] and Brenti [7]. It is interesting to note that there are many other ways to
define distance in molecular biology, and these sequences are typically either known
to be log concave, or conjectured to be log concave. See the book [10] for a collection
of examples.

Our main object of study is the following conjecture which appeared in an unpub-
lished manuscript of William Chen from 2008.

Conjecture 1.1. ([8]) For any fixed n, the sequence

�n,1, �n,2, . . . , �n,n

is log concave.

We have verified this conjecture for n ≤ 50 by computer and will give other evi-
dence for its truth below.

Let In denote the set of involutions in Sn, i.e., those permutations whose square
is the identity. Also define

In,k = {π ∈ In : �(π) = k} and in,k = #In,k.

We conjecture the following.

Conjecture 1.2. For any fixed n, the sequence

in,1, in,2, . . . , in,n

is log concave.

Again, this conjecture has been verified for n ≤ 50. We will show that these two
conjectures are closely related.

The rest of this paper is structured as follows. In the next section we will see
that there is a close connection between Conjectures 1.1 and 1.2. We will also derive
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Schensted correspondence. For more information about this important map, see the
texts of Sagan [15] or Stanley [21].
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the set of all standard Young tableaux of shape λ , and if P∈ SYTλ , then we will also
write shP= λ . The Robinson-Schensted map is a bijection

RS: Sn →
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λ�n
(SYTλ )2,

i.e., a permutation of length n is identified with a pair of standard Young tableaux of
size n and of the same shape. We will use the notation RS(π) = (P,Q). Since shP=
shQ we can define the shape of π to be the common shape of its output tableaux. It
will also be convenient to define for pairs of permutations sh(π , σ) = (shπ , shσ).

We need two important results about RS, the first due to Schensted [16] and the
second to Schützenberger [17].

Theorem 2.1. The map RS has the following properties.

(1) If shπ = (λ1, . . . , λk) then �(π) = λ1. Also, the length of a longest decreasing
subsequence of π is the number of cells in the first column of λ .

(2) A permutation π is an involution if and only if RS(π) = (P, P) for some standard
Young tableau P.

By (2), there is a canonical bijection between involutions and standard Young
tableaux. Because of this, we will go freely back and forth between involutions and
tableaux without further mention.

One way to proveConjecture 1.1 would be to find injectionsF : Ln,k−1×Ln,k+1→
L2n,k for all n, k. Call any map with this domain and range shape preserving if

sh(π , π ′) = sh(σ , σ ′) =⇒ shF(π , π ′) = shF(σ , σ ′),

for all (π , π ′), (σ , σ ′) ∈ Ln,k−1 × Ln,k+1. We will also apply this terminology to
functions f : In,k−1× In,k+1 → I2n,k. Our first result shows that if one can prove Con-
jecture 1.2 using a shape-preserving injection, then one gets Conjecture 1.1 for free.

Theorem 2.2. Suppose that there is a shape-preserving injection f : In,k−1×In,k+1→
I2n,k for some n, k. Then there is a shape-preserving injection F : Ln,k−1×Ln,k+1 →
L2n,k.
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shapes of partitions of n in which the first part is k, and there are n− k additional
parts, each equal to 1, where 1≤ k ≤ n. These shapes will be denoted by

(

k, 1n−k
)

.

Theorem 3.1. For any fixed n, the sequences

�hookn,1 , �hookn,2 , . . . , �hookn,n and ihookn,1 , ihookn,2 , . . . , ihookn,n

are log concave.

(a, b)

Figure 1: The path p= EENEN.

Proof. Since the set “hook” satisfies the hypothesis of Lemma 2.3, it suffices to prove
the involution result. For an algebraic proof note that, by the hook formula or direct
counting,

ihookn,k = number of standard Young tableaux of shape
(

k, 1n−k
)

=

(

n−1
k−1

)

.

It is well known and easy to prove by cancellation of factorials that this sequence of
binomial coefficients is log concave.

There is also a standard combinatorial proof of the log concavity of this sequence
using the technique of Lindström [12], later used to great effect by Gessel and Vien-
not [11]. We review it here for use in the proof of the next theorem. An NE-lattice
path, p, starts at a point (a, b)∈Z

2 and takes unit steps north and east, denotedN and
E respectively. See Figure 1 for an illustration. There is a bijection between the set
of standard Young tableaux P with shP=

(

k, 1n−k
)

and NE-lattice paths from (a, b)
to (a+ k−1, b+n− k) where the i-th step of p is E if and only if i+1 is in the first
row of P. Our example path corresponds to the tableau

1 2 3 5

4

6

P = .
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Proof. Given f , one can construct F as the composition of the following maps:

(π , π ′)
RS2�−→

(

(P,Q),
(

P ′,Q′))

�−→
((

P, P ′) ,
(

Q,Q′))

f 2�−→
((

S, S ′) ,
(

T, T ′))

�−→
(

(S, T ),
(

S ′, T ′))

(RS−1)2�−→
(

σ , σ ′) .

Note that in applying f 2 we are treating each of the tableauxP, . . . , T ′ as involutions in
the manner discussed earlier. Also, the fact that f is shape preserving guarantees that
shS = shT and shS ′ = shT ′ so that one can apply the inverse Robinson-Schensted
map at the last stage.

Unfortunately, as pointed out by Samantha Dahlberg, the hypothesis of the previ-
ous theorem is not always satisfied. Let k = n− 2 and consider pairs of involutions
(ι, ι ′) where sh ι = (n− 3, 2, 1) and sh ι ′ = (n− 1, 1). Using the hook formula, the
number of such pairs is n(n−1)(n−2)(n−4)/3which is asymptotically n4/3. There
are only two shapes with first row n−2, namely, (n−2, 2) and (n−2, 1, 1). Using the
hooklength formula again, one sees that for any of the four pairing of these shapes,
the number of pairs is asymptotic to n4/4. So, for large n, there can be no shape
preserving injection f : In,n−3× In,n−1 → I2n,n−2. Still, there are cases where one can
apply these ideas as will be seen below.

There is another way to relate the log concavity of sequences such as those in
Conjectures 1.1 and 1.2. Let Λ be a set of partitions of n. Define

LΛn,k = {π ∈ Ln,k | shπ ∈ Λ} and �Λn,k = #LΛn,k.

Similarly define IΛn,k and i
Λ
n,k. Clearly, our original sequences are obtained by choosing

Λ to be all partitions of n. At the other extreme, there is also a nice relationship
between the log concavity of these two sequences.

Lemma 2.3. Let Λ contain at most one partition with first row of length k for all
1≤ k≤ n. Then �Λn,1, . . . , �

Λ
n,n is log concave if and only if i

Λ
n.k, . . . , i

Λ
n,k is log concave.

Proof. The hypothesis on Λ and Theorem 2.1 imply that �Λn,k =
(

iΛn,k
)2. The result

now follows since the square function is increasing on nonnegative values.

3. Hooks and Two-Rowed Tableaux

If one considers permutations whose output tableaux under RS have a certain shape,
it becomes easier to prove log-concavity results analogous to Conjectures 1.1 and 1.2.
Using the notation developed at the end of the previous section, let Λ= hook be the
set of all partitions of n that have the shape of a hook. That is, these are the Ferrers
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p

p′ z

q

q′ z

Figure 2: The main step in the lattice path proof of Theorem 3.2.

the generating fuction for this class was found by Atkinson [3], and the simple per-
mutations in the class were explicitly enumerated by Albert and Vatter [1]. Again
using part (1) of Theorem 2.1, we see that if π is skew merged then shπ has first row
of length at least k and first column of length at least n− k for some k. It follows
that shπ is either a hook or the union of a hook and the box in the second row and
column. On the other hand, if shπ is a hook then similar reasoning shows that π must
be skew merged. However, not all permutations whose shape is of the second type are
skew merged. For example, both 2413 and 2143 have shape (2, 2) but the first one is
skew merged while the second is not. We will use a superscript skm in our notation
to restrict to the set of skew merged permutations.

Conjecture 3.3. The sequence

�skmn,1 , �
skm
n,2 , . . . , �

skm
n,n

is log concave.

This conjecture has been verified for n ≤ 9. The reason for the difference in the
size of this bound and the previous ones is that for the earlier conjectures we were
able to use the hook formula to speed up computations considerably.

It is natural to ask about the analogue of the previous conjecture for involutions.
But it turns out that we have already answered this question in Theorem 3.1. To see
why, we need the following result of Stankova.

Theorem 3.4. ([20]) A permutation is skew merged if and only if it avoids the pat-
terns 2143 and 3412.

Corollary 3.5. Let ι be an involution. Then ι is skew merged if and only if ι is of
hook shape.

Proof. We have already observed that the backwards direction holds for all permuta-
tions. For the forward implication, we induct on n where ι ∈Sn. There are two cases
depending on whether n is a fixed point or is in a two cycle of ι . In the first case, we
have the concatenation ι = ι ′n. Thus sh ι is just sh ι ′ with a box for n appended at the
end of the first row, and we are done.

In the second case, suppose n is in a cycle with j < n. We represent ι = ι1 · · · ιn
as the set of points (i, ιi), i ∈ [n], in the first quadrant of the plane. The vertical line

6 M. Bóna, M.-L. Lackner, and B.E. Sagan

To construct an injection f : Ihookn,k−1× Ihookn,k+1 →
(

Ihookn,k

)2 we interpret a pair of invo-
lutions in the domain as a pair of lattice paths (p, p ′) where p goes from (1, 0) to
(k− 1, n− k+ 1) and p ′ goes from (0, 1) to (k, n− k). The paths p and p ′ must
intersect since p starts on the southeast side of p ′ and ends on the northwest side of
it. Let z be the last (most northeast) point in which p and p ′ intersect. We then map
this pair to (q, q ′) where q follows p up to z and then follows p ′, and vice-versa for
q′. It is now a simple matter to show that this gives a well-defined injection f .

We next turn our attention to shapes with at most two rows. Let Λ= 2row be the
set of shapes of the form (k, n− k) as k varies. Note that �2rown,k = 0 for k < n/2, but
we will still start our sequences at k = 1 for simplicity.

Theorem 3.2. For any fixed n, the sequences

�2rown,1 , �2rown,2 , . . . , �2rown,n and i2rown,1 , i2rown,2 , . . . , i2rown,n

are log concave.

Proof. The arguments used to prove Theorem 3.1 can be used here as well. One only
needs to be careful about the lattice path proof. First of all, one maps a tableau to a
lattice path using all the elements of the first row (including 1) for the E steps, and
those of the second row for the N steps. Returning to our example path in Figure 1,
the corresponding tableau is now

1 2

3

4

5

P=
.

The lattice paths which correspond to 2-rowed tableaux are the Dyck paths, those
which never go above the line of slope 1 passing through the initial point (a, b). See
Figure 2 for an illustration. One must now check that if (p, p ′) maps to (q, q ′) that
q and q′ are still Dyck. This is clear for q ′ since the portion of p which it uses lies
below the line y = x− 1 and so certainly lies below y = x+ 1. For q one must use
the fact that z is the last point of intersection. Indeed, it is easy to see that if q ′ is not
Dyck then there would have to be an intersection point of p and p ′ later than z which
is a contradiction.

We remark that the previous result is related to pattern avoidance. If π ∈ Sk is
a permutation called the pattern then a permutation σ avoids π if there is no subse-
quence σ ′ of σ of length k which standardizes to π when one replaces the smallest
element of σ ′ by 1, the next smallest by 2, and so forth. So, by Theorem 2.1 (1),
the permutations whose output tableaux under RS consist of at most two rows are
exactly those that avoid the pattern 321. Thus Theorem 3.2 can be expressed in terms
of 321-avoidance.

Let us now turn to a class of permutations closely related to those of hook shape.
A permutation is skew merged if it is a shuffle of an increasing permutation and a de-
creasing permutation. These permutations have been characterized by Stankova [20],
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A computer has tested this conjecture for 2n≤ 80.
For certain subsets of ecol it is possible to prove log concavity results. We define

the double of a partition λ = (λ1, λ2, . . . , λl) to be λ 2 = (λ1, λ1, λ2, λ2, . . . , λl, λl).
First consider the set Λ = dhook of double hooks, namely the partitions of shape
(

k2, 12n−2k) where 1≤ k≤ n.

Theorem 4.4. For any fixed n, the sequences

�dhook2n,1 , �dhook2n,2 , . . . , �dhook2n,n and idhook2n,1 , idhook2n,2 , . . . , idhook2n,n

are log concave.

Proof. Appealing to Lemma 2.3 again, we only need to prove the statement about
involutions. Applying the hook formula gives the following expression in terms of a
multinomial coefficient

idhook2n,k =
1

(2n− k)(2n− k+1)

(

2n
1, k−1, k, 2n−2k

)

.

Substituting this into the defining inequality for log concavity and cancelling shows
that it suffices to prove

(k−1)(2n−2k)(2n−2k−1)(2n− k+1)(2n− k)

≤ (k+1)(2n−2k+2)(2n−2k+1)(2n− k+2)(2n− k−1).

Substituting d = 2n− 2k one can write both sides of this inequality as a polynomial
in k and d. Moving all terms to the right-hand side we see that one must show

2d4+8d3k+10d2k2+4dk3+4d3+10d2k+10dk2

+2k3+2d2+2dk+4k2−4d−2k−4

≥ 0.

Since d ≥ 0 and k ≥ 1 it is easy to see that the last inequality is valid.

We next turn to two-rowed partitions which have been doubled. Let Λ = d2row
be partitions of shape

(

k2, (n− k)2
)

as k varies.

Theorem 4.5. For any fixed n, the sequences

�d2row2n,1 , �d2row2n,2 , . . . , �d2row2n,n and id2row2n,1 , id2row2n,2 , . . . , id2row2n,n

are log concave.

Proof. As usual, it suffices to consider the case concerning involutions. The hook
formula gives, for n/2≤ k ≤ n,

id2row2n,k =
(2k−n+1)(2k−n+2)2(2k−n+3)
(k+1)2(k+2)2(k+3)(n− k+1)

(

2n
k, k, n− k, n− k

)

.

One now follows the proof of the previous result, except that one uses the substitu-
tions d = 2k− n and c = n− k. The result is a polynomial in c, d which has only
positive coefficients and so we are done.
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(j, n)

(n, j)

A B

C D

Figure 3: The diagram of ι .

through ( j, n) and the horizontal line through (n, j) divide the box containing ι into
four open areas as displayed in Figure 3. Since ι avoids 2143 by Theorem 3.4, the
points in area Amust be increasing. Since ι is an involution, if there is a point in area
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)
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(
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4. Fixed-Point Free Involutions

Chen’s manuscript also included some conjectures about perfect matchings. These
correspond inSn to involutions without fixed points. Their output shapes are charac-
terized by the following result of Schützenberger.
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iecol2n,1, i
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2n,2, . . . , i

ecol
2n,2n
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Conjecture 4.3. For any fixed n, the sequence

�ecol2n,1, �
ecol
2n,2, . . . , �

ecol
2n,2n

is log concave.
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A computer has tested this conjecture for 2n≤ 80.
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as k varies.
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One now follows the proof of the previous result, except that one uses the substitu-
tions d = 2k− n and c = n− k. The result is a polynomial in c, d which has only
positive coefficients and so we are done.
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(i) We have u′(x)u(x)< 0 for x≥ 0.
(ii) We have h(x)≤ u2(x) for x≥ 1/4.

To prove the first claim we first assume, towards a contradiction, that u′(x) = 0
for some x ≥ 0. But then Equation (5.6) forces u(x) = 0 as well. It follows that u(x)
must be the zero function since it is a solution to a second order equation which is
our desired contradiction.

Now, since u′(x) is continuous, we must have u′(x)> 0 for all x≥ 0 or u′(x)< 0
for all x≥ 0. Without loss of generality, we can assume the latter since the substitution
of −u(x) for u(x) takes a solution of (5.2) into another solution. We now break the
proof of (i) into two cases, the first being when u(x) �= 0 for the given value of x.
Assume, towards a contradiction, that u′(x)u(x) > 0. This forces u(x) < 0. But then
u(t) < u(x) < 0 for t > x because we have u′(t) < 0. This contradicts the boundary
condition in (5.3) that u(t)→ 0 as t → ∞. So this case can not occur. The other case
is when u(x) = 0. But since u′(x) < 0 there is a y > x where u(y) < 0 and now we
continue as in the previous case. This finishes the proof of (i). Note that in the process
we have shown that u(x)> 0 for x≥ 0.

To prove (ii), it suffices to show that the function f (x) = u2(x)−h(x) is nonneg-
ative. Using the definition of h(x), we have

f ′(x) = 2u(x)u′(x)+u2(x) = u(x)
(

2u′(x)+u(x)
)

.

Using Equation (5.6) we see that
(

u′(x)
)2

> xu2(x)≥ u2(x)/4 for x≥ 1/4. Recalling
that u′(x)< 0, this translates to 2u′(x)+u(x)< 0. Combining this with u(x)> 0, we
see that f ′(x) < 0. Also the boundary conditions and definition of h(x) show that
f (x)→ 0 as x→ ∞. Thus f (x)≥ 0, as desired.

We are now ready to prove the theorem itself. Dividing Equation (5.5) by u2(x),
it suffices to prove that

g(x) def
= h2(x)−2v(x)h(x)+u2(x)> 0,

where
v(x) def

= −u′(x)/u(x)> 0,

by Claim (i). We now compute, omitting the independent variable and using the
definitions of h(x) and v(x),

g′ =−2hu2−2v′h+2vu2+2uu′

=−2hu2+2h
u′′u− (u′)2

u2
−2u′u+2uu′

=−2h
u4−u′′u+(u′)2

u2
.

Using first the Painlevé II Equation (5.2) and then Equation (5.6) on the numerator
gives

u4−u′′u+
(

u′
)2

= u4− xu2−2u4+
(

u′
)2

= h.
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5. The Tracy-Widom Distribution

We now investigate the limiting distribution of the sequence in Conjecture 1.1. The
Tracy-Widom distribution, first studied by Tracy and Widom [22], has cumulative
distribution function

F(x) = exp
(

−
∫ ∞

x
(t− x)u2(t)dt

)

, (5.1)

where u(x) is a solution to the Painlevé II equation

u′′(x) = xu(x)+2u3(x), (5.2)

satisfying

u(x), u′(x)→ 0 as x→ ∞. (5.3)

Call any twice-differentiable function f : R→R concave at x if f ′′(x)≤ 0. Similarly,
if D⊆ R then we say f is concave on D if it is concave at any point of D. If f only
takes on positive values then we will say the function is log concave at x if the function
log f is concave at x. If f is log concave on an interval of radius one about x then one
can prove that f (x−1) f (x+1)≤ f (x)2.

Percy Deift (personal communication) has shown that the density function of the
Tracy-Widom distribution is log concave for nonnegative x. We thank him for his
kind permission to reproduce his proof here.

Theorem 5.1. (Deift) The density function of the Tracy-Widom distribution is log
concave for x≥ 0.

Proof. To get the density function for the Tracy-Widom distribution, one must take
the derivative F ′(x) where F(x) is as given in Equation (5.1). Then to determine log
concavity, we need to compute

(

logF ′(x)
)′′. Sraightforward calculations give

(

logF ′(x)
)′′

=−u2(x)h2(x)+2u(x)u′(x)h(x)+u4(x)
h2(x)

,

where
h(x) =

∫ ∞

x
u2(t)dt. (5.4)

So it suffices to show that

u2(x)h2(x)+2u(x)u′(x)h(x)+u4(x)≥ 0. (5.5)

Multiplying the Painlevé II Equation (5.2) by u′(x) and integrating from x to infinity
one obtains, with the help of the boundary conditions (5.3),

(

u′(x)
)2

= xu2(x)+h(x)+u4(x). (5.6)

We now make the following claims.

Author's personal copy



Longest Increasing Subsequences and Log Concavity
Longest Increasing Subsequences and Log Concavity 11

(i) We have u′(x)u(x)< 0 for x≥ 0.
(ii) We have h(x)≤ u2(x) for x≥ 1/4.

To prove the first claim we first assume, towards a contradiction, that u′(x) = 0
for some x ≥ 0. But then Equation (5.6) forces u(x) = 0 as well. It follows that u(x)
must be the zero function since it is a solution to a second order equation which is
our desired contradiction.

Now, since u′(x) is continuous, we must have u′(x)> 0 for all x≥ 0 or u′(x)< 0
for all x≥ 0. Without loss of generality, we can assume the latter since the substitution
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Assume, towards a contradiction, that u′(x)u(x) > 0. This forces u(x) < 0. But then
u(t) < u(x) < 0 for t > x because we have u′(t) < 0. This contradicts the boundary
condition in (5.3) that u(t)→ 0 as t → ∞. So this case can not occur. The other case
is when u(x) = 0. But since u′(x) < 0 there is a y > x where u(y) < 0 and now we
continue as in the previous case. This finishes the proof of (i). Note that in the process
we have shown that u(x)> 0 for x≥ 0.

To prove (ii), it suffices to show that the function f (x) = u2(x)−h(x) is nonneg-
ative. Using the definition of h(x), we have

f ′(x) = 2u(x)u′(x)+u2(x) = u(x)
(

2u′(x)+u(x)
)

.

Using Equation (5.6) we see that
(

u′(x)
)2

> xu2(x)≥ u2(x)/4 for x≥ 1/4. Recalling
that u′(x)< 0, this translates to 2u′(x)+u(x)< 0. Combining this with u(x)> 0, we
see that f ′(x) < 0. Also the boundary conditions and definition of h(x) show that
f (x)→ 0 as x→ ∞. Thus f (x)≥ 0, as desired.

We are now ready to prove the theorem itself. Dividing Equation (5.5) by u2(x),
it suffices to prove that

g(x) def
= h2(x)−2v(x)h(x)+u2(x)> 0,

where
v(x) def

= −u′(x)/u(x)> 0,

by Claim (i). We now compute, omitting the independent variable and using the
definitions of h(x) and v(x),
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=−2hu2+2h
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=−2h
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.

Using first the Painlevé II Equation (5.2) and then Equation (5.6) on the numerator
gives
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We have verified this conjecture up to n = 50. Interestingly, the corresponding
conjecture for the involution sequence is false as i3(q)i5(q) �≥ i24(q).

6.4. Infinite Log Concavity

There is another way in which one can generalize log concavity. The L-operator ap-
plied to a sequence a= (a0, a1, . . . , an) returns a sequence b= (b0, b1, . . . , bn) where
bk = a2k−ak−1ak+1 for 0≤ k≤ n (with the convention that a−1 = an+1 = 0). Clearly,
a being log concave is equivalent to b = L(a) being nonnegative. But now one can
apply the operator multiple times. Call a infinitely log concave if Li(a) is a nonneg-
ative sequence for all i≥ 1. This concept was introduced by Boros and Moll [5] and
has since been studied by a number of authors including Brändén [6], McNamara and
Sagan [13], and Uminsky and Yeats [24]. Here is yet another conjecture of Chen.

Conjecture 6.2. ([8]) For any fixed n, the sequence

�n,1, �n,2, . . . , �n,n

is infinitely log concave.

Note that proving that a given sequence is infinitely log concave can not necessar-
ily be done by computer since one needs to apply the L-operator an infinite number
of times. However, we are able to prove the previous conjecture for small n by us-
ing a technique developed by McNamara and Sagan [13]. Given a real number r we
say that the sequence a is r-factor log concave if a2k ≥ rak−1ak+1 for all k. So the
sequence will be log concave as long as r ≥ 1. Let r0 =

(

3+
√
5
)

/2.

Lemma 6.3. ([13]) Let a be a sequence of nonnegative real numbers. If a is r0-factor
log concave, then so is L(a). If follows that if a is r0-factor log concave then it is also
infinitely log concave.

Using this lemma, we can try to prove that a is infinitely log concave as follows.
Apply the L-operator a finite number of times, checking that at each stage the se-
quence is nonnegative. If the sequence becomes r0-factor log concave after the finite
number of applications, then the lemma allows us to stop and conclude infinite log
concavity. Using this technique and a computer we have proved the following.

Proposition 6.4. The sequence

�n,1, �n,2, . . . , �n,n

is infinitely log concave for n≤ 50.

Finally, one could wonder about infinite log concavity of the involution sequence.
But again, it behaves differently and is not infinitely log concave starting at n= 4.

References

1. Albert, M.H., Vatter, V.: Generating and enumerating 321-avoiding and skew-merged
simple permutations. Electron. J. Combin. 20(2), #P44 (2013)
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Thus g′(x) =−2h2(x)/u2(x)< 0.
We claim that g(x)→ 0 as x→ ∞ which will finish the proof since, together with

g′(x) < 0 for x ≥ 0, this forces g(x) > 0. We first need to analyze what happens
to v(x). By Equation (5.6) we have v2 = x+ u2 + h/u2. As x → ∞ we know that
u2(x)→ 0 and, by Claim (ii), h(x)/u2(x) ≤ 1. Thus v(x) ∼ √

x and −2v(x)h(x)→ 0
since it is known that h(x) decreases as exp

(

− x3/2
)

. We already know that the other
two summands in g(x) approach zero, so we are done with the claim and with the
proof of the theorem.

6. Other Conjectures

6.1. More on the Tracy-Widom Distribution

Approximate values for the mean and variance of the Tracy-Widom distribution are
µ ≈ −1.77 and σ 2 ≈ 0.81. So Theorem 5.1 only addresses what is going on in the
tail. It would be very interesting to see what can be said for negative x. Note that
the point in the proof where the bound x ≥ 0 was imposed is in the proof of Claim
(i). (Claim (ii) is only needed to analyze what goes on as x → ∞ and so that bound
is not the controlling one.) In particular, we need x to be nonnegative when using
Equation (5.6) to conclude that u′(x) �= 0.

If log concavity of the whole distribution could be proved, then one might be able
to prove Conjecture 1.1 as follows. First one would try to find a boundN such that for
n≥N the log concavity of the Tracy-Widom distribution implies the log concavity of
the �n,k sequence. Then, if N were not too large, one could check log concavity for
n< N by computer.

6.2. Real Zeros

Let a0, a1, . . . , an be a sequence of real numbers. Consider the corresponding gener-
ating function a(q) = a0+a1q+ · · ·+anqn. It is well known that if the ak are positive
then a(q) having only real roots implies that the original sequence is log concave.
So one might ask about the polynomials �n(q) and in(q) for the sequences in Con-
jectures 1.1 and 1.2, respectively. (The fact that they both begin with a zero just
contributes a factor of q.) Unfortunately, neither seem to be real rooted in general. In
particular, this is true of �12(q) and i4(q).

6.3. q-Log Convexity

The �n(q) discussed in the previous subsection do seem to enjoy another interesting
property. We partially order polynomials with real coefficients by letting f (q) ≤
g(q) if g(q)− f (q) has nonnegative coefficients. Equivalently, for any power qi its
coefficient in f (q) is less than or equal to its coefficient in g(q). Define a sequence
f1(q), f2(q), . . . to be q-log convex if fn−1(q) fn+1(q)≥ f 2n (q) for all n ≥ 2. Another
conjecture from the paper of Chen is as follows.

Conjecture 6.1. ([8]) The sequence �1(q), �2(q), . . . is q-log convex.
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